Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 11 de 11
Filtrar
Más filtros










Base de datos
Intervalo de año de publicación
1.
ACS ES T Water ; 4(4): 1498-1507, 2024 Apr 12.
Artículo en Inglés | MEDLINE | ID: mdl-38633366

RESUMEN

Augmenting seawater with wastewater has the potential to reduce the energy demand and environmental impacts associated with seawater desalination. Alternatively, as wastewater reuse becomes more widespread, augmenting wastewater with seawater can increase the available water supply. However, the chemistry of disinfecting a blended stream has not been explored. Toxic byproducts, including N-nitrosodimethylamine (NDMA), are expected to form during disinfection, and the extent of formation will likely be a function of which stream is chlorinated and whether disinfection happens before or after blending. In this work, three blending-disinfection scenarios were modeled and experimentally evaluated in bench-scale systems treating synthetic and authentic waters. Modeling results suggested that chlorinating preblended wastewater and seawater would produce the most NDMA because it yielded the highest concentrations of bromochloramine, which was previously found to promote NDMA formation. However, chlorinating wastewater prior to blending with seawater, which modeling indicated would form the most dichloramine, produced the most NDMA in experiments. When seawater was disinfected prior to blending with wastewater, bromide likely converted most chlorine to free bromine. Bromamines formed after blending, however, did not lead to an elevated level of NDMA formation. Therefore, to minimize NDMA formation when disinfecting blended wastewater-seawater, seawater should be disinfected prior to introducing wastewater.

2.
Environ Sci Technol ; 58(1): 3-16, 2024 Jan 09.
Artículo en Inglés | MEDLINE | ID: mdl-38193155

RESUMEN

Water reuse is rapidly becoming an integral feature of resilient water systems, where municipal wastewater undergoes advanced treatment, typically involving a sequence of ultrafiltration (UF), reverse osmosis (RO), and an advanced oxidation process (AOP). When RO is used, a concentrated waste stream is produced that is elevated in not only total dissolved solids but also metals, nutrients, and micropollutants that have passed through conventional wastewater treatment. Management of this RO concentrate─dubbed municipal wastewater reuse concentrate (MWRC)─will be critical to address, especially as water reuse practices become more widespread. Building on existing brine management practices, this review explores MWRC management options by identifying infrastructural needs and opportunities for multi-beneficial disposal. To safeguard environmental systems from the potential hazards of MWRC, disposal, monitoring, and regulatory techniques are discussed to promote the safety and affordability of implementing MWRC management. Furthermore, opportunities for resource recovery and valorization are differentiated, while economic techniques to revamp cost-benefit analysis for MWRC management are examined. The goal of this critical review is to create a common foundation for researchers, practitioners, and regulators by providing an interdisciplinary set of tools and frameworks to address the impending challenges and emerging opportunities of MWRC management.


Asunto(s)
Ultrafiltración , Aguas Residuales , Epiclorhidrina , Nutrientes , Agua
3.
Membranes (Basel) ; 11(7)2021 Jun 22.
Artículo en Inglés | MEDLINE | ID: mdl-34206467

RESUMEN

The manner in which membrane-fouling experiments are conducted and how fouling performance data are represented have a strong impact on both how the data are interpreted and on the conclusions that may be drawn. We provide a couple of examples to prove that it is possible to obtain misleading conclusions from commonly used representations of fouling data. Although the illustrative example revolves around dead-end ultrafiltration, the underlying principles are applicable to a wider range of membrane processes. When choosing the experimental conditions and how to represent fouling data, there are three main factors that should be considered: (I) the foulant mass is principally related to the filtered volume; (II) the filtration flux can exacerbate fouling effects (e.g., concentration polarization and cake compression); and (III) the practice of normalization, as in dividing by an initial value, disregards the difference in driving force and divides the fouling effect by different numbers. Thus, a bias may occur that favors the experimental condition with the lower filtration flux and the less-permeable membrane. It is recommended to: (I) avoid relative fouling performance indicators, such as relative flux decline (J/J0); (II) use resistance vs. specific volume; and (III) use flux-controlled experiments for fouling performance evaluation.

4.
Environ Sci Technol ; 55(9): 6281-6289, 2021 05 04.
Artículo en Inglés | MEDLINE | ID: mdl-33881830

RESUMEN

Ozonation is widely used in wastewater reclamation treatment trains, either for micropollutant control or as a disinfectant and preoxidant in certain reuse processes. We recently found that ozonation of secondary effluent produces nitromethane, which can be efficiently transformed to genotoxic halonitromethanes by chlorination. In this work, the fate of nitromethane through water reuse treatment trains was characterized by analyzing samples from five reuse operations employing ozone. Nitromethane was poorly (<50%) rejected by reserve osmosis (RO), not removed by, and in some cases, increased by ultraviolet/advanced oxidation processes (UV/AOP). Sufficient nitromethane remained after advanced treatment that when chlorine was added to mimic secondary disinfection, halonitromethane formation was consistently observed. In contrast, biological activated carbon removed most (>75%) nitromethane. Bench-scale experiments were conducted to verify low removal by RO in clean systems and with wastewater effluent and to quantify the kinetics of direct and indirect photolysis of nitromethane in UV/AOP. An explanation for increasing nitromethane concentration during AOP is proposed. These results indicate that nitromethane presents a unique hazard to direct potable reuse systems, due to its ubiquitous formation during wastewater ozonation, poor removal by RO and UV/AOP, and facile conversion into genotoxic halonitromethanes upon chlorine addition.


Asunto(s)
Ozono , Contaminantes Químicos del Agua , Purificación del Agua , Metano/análogos & derivados , Nitroparafinas , Aguas Residuales , Agua
5.
Water Res ; 170: 115282, 2020 Mar 01.
Artículo en Inglés | MEDLINE | ID: mdl-31739242

RESUMEN

A modeling framework was developed to evaluate synergistic blending of the waste streams from seawater reverse osmosis (RO) desalination and wastewater treatment facilities that are co-located or in close proximity. Four scenarios were considered, two of which involved blending treated wastewater with the brine resulting from the seawater RO desalination process, effectively diluting RO brine prior to discharge. One of these scenarios considers the capture of salinity-gradient energy. The other two scenarios involved blending treated wastewater with the intake seawater to dilute the influent to the RO process. One of these scenarios incorporates a low-energy osmotic dilution process to provide high-quality pre-treatment for the wastewater. The model framework evaluates required seawater and treated wastewater flowrates, discharge flowrates and components, boron removal, and system energy requirements. Using data from an existing desalination facility in close proximity to a wastewater treatment facility, results showed that the influent blending scenarios (Scenarios 3 and 4) had several advantages over the brine blending scenarios (Scenarios 1 and 2), including: (1) reduced seawater intake and brine discharge flowrates, (2) no need for second-pass RO for boron control, and (3) reduced energy consumption. It should be noted that the framework was developed for use with co-located seawater desalination and coastal wastewater reclamation facilities but could be extended for use with desalination and wastewater reclamation facilities in in-land locations where disposal of RO concentrate is a serious concern.


Asunto(s)
Aguas Residuales , Purificación del Agua , Membranas Artificiales , Ósmosis , Salinidad , Agua de Mar
6.
Environ Sci Technol ; 53(8): 4380-4388, 2019 04 16.
Artículo en Inglés | MEDLINE | ID: mdl-30887806

RESUMEN

A stepwise method for determining limiting flux and limiting osmotic pressure and a constant osmotic pressure method to validate the limiting flux were developed. First, five of the most commonly used FO membranes were characterized for water permeability ( A), solute permeability ( B), and structural parameter ( S). During both stepwise and constant osmotic pressure fouling experiments, membrane fouling constrained water flux to a singular, common upper limit, the limiting flux, for all membranes despite very different A and A/ B values for the membranes. Conversely, there was not an upper limit to reverse salt flux. It was observed that reverse salt flux increases as S decreases; however, this does not mean that higher S values are desirable. Higher S values (> ∼600 µm) also increase dilutive internal concentration polarization, which is recognized as the major impediment to achieving high FO water flux. For osmotic processes where membrane fouling occurs, membrane transport parameters A and B may not be useful performance indicators, and the goal of improving water flux by developing highly permeable, highly selective membranes may not be realistic. Instead, optimizing fouling mitigation strategies, hydrodynamics at the membrane surface, and membrane module configuration may be more promising alternatives for improving performance.


Asunto(s)
Purificación del Agua , Membranas Artificiales , Ósmosis , Presión Osmótica , Permeabilidad
7.
Environ Sci Technol ; 48(11): 6437-43, 2014 Jun 03.
Artículo en Inglés | MEDLINE | ID: mdl-24798068

RESUMEN

A pilot system was designed and constructed to evaluate reverse osmosis (RO) energy reduction that can be achieved using pressure-retarded osmosis (PRO). The RO-PRO experimental system is the first known system to utilize energy from a volume of water transferred from atmospheric pressure to elevated pressure across a semipermeable membrane to prepressurize RO feedwater. In other words, the system demonstrated that pressure could be exchanged between PRO and RO subsystems. Additionally, the first experimental power density data for a RO-PRO system is now available. Average experimental power densities for the RO-PRO system ranged from 1.1 to 2.3 W/m2. This is higher than previous river-to-sea PRO pilot systems (1.5 W/m2) and closer to the goal of 5 W/m2 that would make PRO an economically feasible technology. Furthermore, isolated PRO system testing was performed to evaluate PRO element performance with higher cross-flow velocities and power densities exceeding 8 W/m2 were achieved with a 28 g/L NaCl draw solution. From this empirical data, inferences for future system performance can be drawn that indicate future RO-PRO systems may reduce the specific energy requirements for desalination by ∼1 kWh/m3.


Asunto(s)
Cloruro de Sodio/aislamiento & purificación , Purificación del Agua/métodos , Membranas Artificiales , Concentración Osmolar , Ósmosis , Proyectos Piloto , Presión , Salinidad
8.
Bioresour Technol ; 122: 207-16, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22771022

RESUMEN

This investigation evaluates the use of organic ionic salt solutions as draw solutions for specific use in osmotic membrane bioreactors. Also, this investigation presents a simple method for determining the diffusion coefficient of ionic salt solutions using only a characterized membrane. A selection of organic ionic draw solutions underwent a desktop screening process before being tested in the laboratory and evaluated for performance using specific salt flux (reverse salt flux per unit water flux), biodegradation potential, and replenishment cost. Two of the salts were found to have specific salt fluxes three to six times lower than two commonly used inorganic draw solutions, NaCl and MgCl(2). All of the salts tested have organic anions with the potential to degrade in the bioreactor as a carbon source and aid in nutrient removal. Results demonstrate the potential benefits of organic ionic salt draw solutions over currently implemented inorganics in osmotic membrane bioreactor systems.


Asunto(s)
Reactores Biológicos , Membranas Artificiales , Compuestos Orgánicos/química , Sales (Química)/química , Biodegradación Ambiental , Reactores Biológicos/economía , Difusión , Conductividad Eléctrica , Iones , Ósmosis , Presión , Soluciones , Agua/química , Purificación del Agua/economía
9.
Water Res ; 44(15): 4601-15, 2010 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-20579682

RESUMEN

Terminal lakes are water bodies that are located in closed watersheds with the only output of water occurring through evaporation or infiltration. The majority of these lakes, which are commonly located in the desert and influenced by human activities, are increasing in salinity. Treatment options are limited, due to energy costs, and many of these lakes provide an excellent opportunity to test solar-powered desalination systems. This paper theoretically investigates utilization of direct contact membrane distillation (DCMD) coupled to a salt-gradient solar pond (SGSP) for sustainable freshwater production at terminal lakes. A model for heat and mass transport in the DCMD module and a thermal model for an SGSP were developed and coupled to evaluate the feasibility of freshwater production. The construction of an SGSP outside and inside of a terminal lake was studied. As results showed that freshwater flows are on the same order of magnitude as evaporation, these systems will only be successful if the SGSP is constructed inside the terminal lake so that there is little or no net increase in surface area. For the study site of this investigation, water production on the order of 2.7 x 10(-3) m(3) d(-1) per m(2) of SGSP is possible. The major advantages of this system are that renewable thermal energy is used so that little electrical energy is required, the coupled system requires low maintenance, and the terminal lake provides a source of salts to create the stratification in the SGSP.


Asunto(s)
Algoritmos , Agua Dulce/química , Modelos Teóricos , Energía Solar , Calor , Humanos , Membranas Artificiales , Politetrafluoroetileno/química , Porosidad , Salinidad , Cloruro de Sodio/química , Volatilización
10.
Water Res ; 41(17): 4005-14, 2007 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-17604810

RESUMEN

The nutrient-rich liquid stream produced during the dewatering of digested biomass (i.e., the centrate) is commonly mixed with the influent raw wastewater at wastewater treatment facilities. This increases the nitrogen and phosphorus loading on biological processes, increases operating costs, and in some cases, results in increased nutrient concentrations in the final effluent. Forward osmosis (FO) is a membrane treatment process that was investigated at bench scale to determine its feasibility to concentrate centrate under both batch and continuous operating conditions. The continuous bench-scale system used FO as pretreatment for reverse osmosis (RO). Results demonstrated that high water flux and high nutrient rejection could be achieved. The combined FO/RO process exhibited sustainable flux over an extended time period. A mathematical model was developed in order to determine the specific energy, power, and membrane area requirements for a larger-scale centrate treatment process. Modeling results indicated that to optimize power and membrane area requirements, the system should be operated at approximately 70% water recovery.


Asunto(s)
Biomasa , Purificación del Agua/métodos , Amoníaco/química , Anaerobiosis , Membranas Artificiales , Ósmosis , Fosfatos/química , Soluciones , Factores de Tiempo
11.
Environ Sci Technol ; 40(23): 7381-6, 2006 Dec 01.
Artículo en Inglés | MEDLINE | ID: mdl-17180992

RESUMEN

Growing demands for potable water have strained water resources and increased interest in wastewater reclamation for potable reuse. This interest has brought increased attention to endocrine-disrupting chemicals (EDCs) as emerging water contaminants. The effect of EDCs, and in particular natural steroid hormones, on humans is of heightened interest in the study of wastewater reuse in advanced life support systems (e.g., space missions) because they are excreted in urine and have high endocrine-disrupting potencies. Direct contact membrane distillation (DCMD) and forward osmosis (FO) are being investigated for wastewater treatment in space. Retention of two natural steroid hormones, estrone and 17beta-estradiol, by these two processes was evaluated in the current investigation. DCMD provided greater than 99.5% hormone rejection; DCMD also provided constant flux, greater than 99.9% urea and ammonia rejection, and high water recovery. FO provided from 77 to 99% hormone rejection depending on experiment duration and feed solution chemistry.


Asunto(s)
Disruptores Endocrinos/análisis , Hormonas Esteroides Gonadales/análisis , Membranas Artificiales , Eliminación de Residuos Líquidos/métodos , Contaminantes Químicos del Agua/análisis , Purificación del Agua/métodos , Ósmosis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA
...